Representación de relaciones

Los ejemplos de relaciones que más se presentan en el área de la computación son aquellas que están definidas sobre conjuntos finitos. En esta sección se trataran dos formas de representar dichas relaciones y su uso para poder identificar las propiedades vistas en la sección anterior.

Representación de relaciones usando matrices

Un método para el estudio de las relaciones de manera algorítmica es utilizando matrices compuestas de ceros y unos.

 Sean A y B conjuntos finitos de la forma:

Si R es una relación de A en B. La relación R puede ser representada por la matriz , donde

La matriz se denomina matriz de R. En otras palabras la matriz, de ceros y unos, de R tiene un 1 en la posición cuando está relacionado con , y un 1 en está posición si no está relacionado con .

Obsérvese en la definición anterior que los elementos de A y B han sido escritos en un orden particular pero arbitrario. Por lo tanto, la matriz que representa una relación depende de los órdenes usados para A y B. Cuando A = B usamos el mismo orden para A y B.

EJEMPLO:

Sean .

Consideremos la siguiente relación de :

.

Entonces la matriz de R es

Recíprocamente, dando los conjuntos A y B con m y n elementos respectivamente, una matriz de m x n formada de ceros y unos determina una relación de A en B, como se ilustra en el siguiente ejemplo.

Representación de relaciones usando conjuntos.

Un conjunto es una colección de objetos considerada como un objeto en sí. Los objetos de la colección pueden ser cualquier cosa: personas, números, colores, letras, figuras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto. Por ejemplo, el conjunto de los colores del arcoíris es:

AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta}

Un conjunto suele definirse mediante una propiedad que todos sus elementos comparten. Por ejemplo, para los números naturales, si consideramos la propiedad de ser un número primo, el conjunto de los número primos es:

P = {2, 3, 5, 7, 11, 13, …}

Un conjunto queda definido únicamente por sus miembros y por nada más. En particular el orden en el que se representen estos es irrelevante. Además, cada elemento puede aparecer de manera idéntica una sola vez, esto es, no puede haber elementos totalmente idénticos repetidos. Por ejemplo:

S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta, Naranja}

Los conjuntos pueden ser finitos o infinitos. El conjunto de los número naturales es infinito, pero el conjunto de los planetas en el sistema solar es finito (tiene ocho elementos). Además, con los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.

Los conjuntos son un concepto básico, en el sentido de que no es posible definirlos en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal, apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y las funciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjunto.

Representación de relaciones usando grafos.

un grafo 

es el principal objeto de estudio de la teoría de grafos.

Informalmente, un grafo es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binaria entre elementos de un conjunto.

Típicamente, un grafo se representa gráficamente como un conjunto de puntos (vértices o nodos) unidos por líneas (aristas).

Un grafo G es un par ordenado G = (V,E), donde:

  • V es un conjunto de vértices o nodos, y
  • E es un conjunto de aristas o arcos, que relacionan estos nodos.

Normalmente V suele ser finito. Muchos resultados importantes sobre grafos no son aplicables para grafos infinitos.

Se llama orden del grafo G a su número de vértices, | V | .

El grado de un vértice o nodo V es igual al número de arcos E que se encuentran en él.

Un bucle es una arista que relaciona al mismo nodo; es decir, una arista donde el nodo inicial y el nodo final coinciden.

EJEMPLO:

  • V:={1,2,3,4,5,6}
  • E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

El hecho que el vértice 1 sea adyacente con el vértice 2 puede ser denotado como 1 ~ 2.

  • En la teorías de las categorías una categoría puede ser considerada como un multigrafo dirigido, con los objetos como vértices y los morfismos como aristas dirigidas.
  • En ciencias de la computación los grafos dirigidos son usados para representar máquinas de estado finito y algunas otras estructuras discretas.
  • Una relación binaria R en un conjunto X es un grafo dirigido simple. Dos vértices ab en X están conectados por una arista dirigida ab si aRb.
Representación de relaciones usando diagramas de flechas.

Una forma de representar el producto cartesiano es el diagrama de flechas.

Escriba los elementos de a  y  los elementos de b en dos discos disyuntos, y luego dibuje una flecha de ” a e a ”  en ” b e b”  cada vez que a este relacionado con b.

About these ads